3.550 \(\int \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=109 \[ \frac{2 \left (5 a^2+2 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 d \sqrt{\cos (c+d x)}}-\frac{14 a b (e \cos (c+d x))^{3/2}}{15 d e}-\frac{2 b (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))}{5 d e} \]

[Out]

(-14*a*b*(e*Cos[c + d*x])^(3/2))/(15*d*e) + (2*(5*a^2 + 2*b^2)*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])
/(5*d*Sqrt[Cos[c + d*x]]) - (2*b*(e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x]))/(5*d*e)

________________________________________________________________________________________

Rubi [A]  time = 0.129601, antiderivative size = 109, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {2692, 2669, 2640, 2639} \[ \frac{2 \left (5 a^2+2 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{e \cos (c+d x)}}{5 d \sqrt{\cos (c+d x)}}-\frac{14 a b (e \cos (c+d x))^{3/2}}{15 d e}-\frac{2 b (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))}{5 d e} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])^2,x]

[Out]

(-14*a*b*(e*Cos[c + d*x])^(3/2))/(15*d*e) + (2*(5*a^2 + 2*b^2)*Sqrt[e*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])
/(5*d*Sqrt[Cos[c + d*x]]) - (2*b*(e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x]))/(5*d*e)

Rule 2692

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m + p)), x] + Dist[1/(m + p), Int[(g*Cos[e + f*x])^
p*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(m + p) + a*b*(2*m + p - 1)*Sin[e + f*x]), x], x] /; FreeQ[{
a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + p, 0] && (IntegersQ[2*m, 2*p] || IntegerQ[m
])

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \sqrt{e \cos (c+d x)} (a+b \sin (c+d x))^2 \, dx &=-\frac{2 b (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))}{5 d e}+\frac{2}{5} \int \sqrt{e \cos (c+d x)} \left (\frac{5 a^2}{2}+b^2+\frac{7}{2} a b \sin (c+d x)\right ) \, dx\\ &=-\frac{14 a b (e \cos (c+d x))^{3/2}}{15 d e}-\frac{2 b (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))}{5 d e}+\frac{1}{5} \left (5 a^2+2 b^2\right ) \int \sqrt{e \cos (c+d x)} \, dx\\ &=-\frac{14 a b (e \cos (c+d x))^{3/2}}{15 d e}-\frac{2 b (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))}{5 d e}+\frac{\left (\left (5 a^2+2 b^2\right ) \sqrt{e \cos (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{5 \sqrt{\cos (c+d x)}}\\ &=-\frac{14 a b (e \cos (c+d x))^{3/2}}{15 d e}+\frac{2 \left (5 a^2+2 b^2\right ) \sqrt{e \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 d \sqrt{\cos (c+d x)}}-\frac{2 b (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))}{5 d e}\\ \end{align*}

Mathematica [A]  time = 0.312287, size = 80, normalized size = 0.73 \[ \frac{\sqrt{e \cos (c+d x)} \left (6 \left (5 a^2+2 b^2\right ) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )-2 b \cos ^{\frac{3}{2}}(c+d x) (10 a+3 b \sin (c+d x))\right )}{15 d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cos[c + d*x]]*(a + b*Sin[c + d*x])^2,x]

[Out]

(Sqrt[e*Cos[c + d*x]]*(6*(5*a^2 + 2*b^2)*EllipticE[(c + d*x)/2, 2] - 2*b*Cos[c + d*x]^(3/2)*(10*a + 3*b*Sin[c
+ d*x])))/(15*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 1.132, size = 251, normalized size = 2.3 \begin{align*}{\frac{2\,e}{15\,d} \left ( -24\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-40\,ab \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}+24\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+15\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}+6\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}+40\,ab \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}-6\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-10\,\sin \left ( 1/2\,dx+c/2 \right ) ab \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x)

[Out]

2/15/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*e*(-24*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6
-40*a*b*sin(1/2*d*x+1/2*c)^5+24*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+6*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin
(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^2+40*a*b*sin(1/2*d*x+1/2*c)^3-6*b^2*cos(1/2
*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-10*sin(1/2*d*x+1/2*c)*a*b)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{e \cos \left (d x + c\right )}{\left (b \sin \left (d x + c\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*cos(d*x + c))*(b*sin(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-{\left (b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}\right )} \sqrt{e \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

integral(-(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2)*sqrt(e*cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))**2*(e*cos(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{e \cos \left (d x + c\right )}{\left (b \sin \left (d x + c\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sin(d*x+c))^2*(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(e*cos(d*x + c))*(b*sin(d*x + c) + a)^2, x)